Principal Components and Independent Component Analysis of Solar and Space Data
نویسندگان
چکیده
منابع مشابه
Principal independent component analysis
Conventional blind signal separation algorithms do not adopt any asymmetric information of the input sources, thus the convergence point of a single output is always unpredictable. However, in most of the applications, we are usually interested in only one or two of the source signals and prior information is almost always available. In this paper, a principal independent component analysis (PI...
متن کاملeffect of seed priming and irrigation regimes on yield,yield components and quality of safflowers cultivars
این مطالعه در سال 1386-87 در آزمایشگاه و مزرعه پژوهشی دانشگاه صنعتی اصفهان به منظور تعیین مناسب ترین تیمار بذری و ارزیابی اثر پرایمینگ بر روی سه رقم گلرنگ تحت سه رژیم آبیاری انجام گرفت. برخی از مطالعات اثرات سودمند پرایمینگ بذر را بر روی گیاهان مختلف بررسی کرده اند اما در حال حاضر اطلاعات کمی در مورد خصوصیات مربوط به جوانه زنی، مراحل نموی، عملکرد و خصوصیات کمی و کیفی بذور تیمار شده ژنوتیپ های م...
Comparative Study of Principal Component Analysis and Independent Component Analysis
Face recognition is emerging as an active research area with numerous commercial and law enforcement applications. This paper presents comparative analysis of two most popular subspace projection techniques for face recognition. It compares Principal Component Analysis (PCA) and Independent Component Analysis (ICA), as implemented by the InfoMax algorithm. ORL face database is used for training...
متن کاملFaults and fractures detection in 2D seismic data based on principal component analysis
Various approached have been introduced to extract as much as information form seismic image for any specific reservoir or geological study. Modeling of faults and fractures are among the most attracted objects for interpretation in geological study on seismic images that several strategies have been presented for this specific purpose. In this study, we have presented a modified approach of ap...
متن کاملPrincipal Component, Independent Component and Parallel Factor Analysis
This talk is an introduction to Independent Component Analysis (ICA) and Parallel Factor Analysis (PARAFAC), the way they are related and their links with Principal Component Analysis (PCA). PCA is now a standard technique for the analysis of two-way multivariate data, i.e., data available in matrix format. However, principal components are subject to rotational in-variance. By imposing statist...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Solar Physics
سال: 2007
ISSN: 0038-0938,1573-093X
DOI: 10.1007/s11207-007-9026-2